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ABSTRACT 
Discrete choice models are widely used to analyze consumers’ choice of a single, discrete 
alternative from a set of mutually exclusive choice alternatives. However, in numerous 
situations, consumers may choose multiple alternatives that are imperfect substitutes for one 
another, as opposed to a single alternative. Further, consumer choices typically involve decisions 
pertaining to “how much to consume” (i.e., a continuous quantity dimension) along with the 
discrete choices of “what to choose.” Such multiple discrete-continuous (MDC) choices, 
involving whether-to-choose and how-much-to-consume decisions for multiple goods, are 
ubiquitous in consumer decision-making and of interest for empirical enquiry in a variety of 
fields, including economics, marketing, and transportation. This paper reviews the econometric 
modeling structures used to model discrete-continuous choices, with a particular focus on MDC 
choices. A review of the recent advances is provided along with a discussion of the several 
developments on the horizon and the challenges that lie beyond. 
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1. BACKGROUND 
Several consumer choices are characterized by a discrete dimension as well as a continuous 
dimension. Examples of such choice situations include vehicle type holdings and usage, 
appliance choice and energy consumption, housing tenure (rent or purchase) and square footage, 
brand choice and quantity, and activity type choice and duration of time investment of 
participation. Two broad model structures may be identified in the literature to handle such 
discrete-continuous choice situations. The first structure (sometimes referred to as the “reduced-
form” structure) has a separate equation for the discrete choice and another separate equation for 
the continuous choice, with jointness introduced through the statistical correlation in the random 
stochastic components of each equation. That is, a discrete choice model and a continuous 
regression model are specified separately, and then simply statistically stitched together through 
the stochastic terms. This first structure has seen extensive use and has proved useful to handle 
many empirical situations, but it is not based off an underlying (and unifying) theoretical 
economic model (this structure does not include the class of indirect utility function-based 
models that are consistent with utility maximization, as discussed in the next section). The 
second structure to discrete-continuous choice modeling, and the one of interest in this paper, 
originates from the classical microeconomic theory of utility maximization. While much work in 
the context of consumer utility maximization has been focused on the case of a single discrete-
continuous (SDC) choice situation (where the choice involves the selection of one of many 
alternatives and the continuous dimension associated with the chosen alternative), there has been 
increasing interest recently in the multiple discrete-continuous choice (MDC) situation (where 
the choice situation involves the selection of one or more alternatives, along with a continuous 
quantity dimension associated with the consumed alternatives). Such MDC choices are pervasive 
in the social sciences, including transportation, economics, and marketing. Examples include 
individuals’ time-use choices (decisions to engage in different types of activities and time 
allocation to each activity), investment portfolios (where and how much to invest), and grocery 
purchases (brand choice and purchase quantity). Regardless of whether a choice situation 
belongs to an SDC case or an MDC case, at a basic level, the choice process faced by the 
consumer can be formulated using the theory of utility maximization as described next. 
 
1.1. The Random Utility Maximization (RUM) Approach to Modeling Discrete-Continuous 
Choices 
Consumers are assumed to maximize a direct utility function ( )U x over a set of non-negative 

consumption quantities 1( ,..., ,..., )k Kx x xx  subject to a budget constraint, as below: 

Max ( )U x such that . Ex p  and 0kx         (1) 

where ( )U x is a quasi-concave, increasing and continuously differentiable utility function with 
respect to the consumption quantity vector, p is the vector of unit prices for all goods, and E is 
the total expenditure (or income). Note that we are suppressing the index for the consumer in 
Equation (1) for presentation efficiency. The formulation above is equally applicable to cases with 
complete or incomplete demand systems (that is, the modeling of demand for all commodities that enter 
preferences or the modeling of demand for a subset of commodities that enter preferences).1 The vector 

                                                            
1 A complete demand system involves the modeling of the demands of all consumption goods that exhaust the 
consumption space of consumers. However, complete demand systems require data on prices and consumptions of 
all commodity/service items, and can be impractical when studying consumptions in finely defined 
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x  in Equation (1) may or may not include an outside good. The outside good, when included, 
represents the part of the total budget (e.g., income) that is not spent on the K inside goods of 
interest to the analyst. Generally, the outside good is treated as a numeraire with unit price, 
implying that the prices and characteristics of all goods grouped into the outside category do not 
influence the choice and expenditure allocation among the inside goods (see Deaton and 
Muellbauer, 1980). The outside good allows for the overall demand for the inside goods to 
change due to changes in prices and other influential factors of the inside goods. Other 
assumptions typically made in the above utility maximization formulation are: (a) the direct 
utility contribution due to the consumption of different alternatives is additively separable, and 
(b) the constraint is linear in prices, and it is the only constraint governing consumers’ decisions. 
We will return to these assumptions later. 

The form of the utility function ( )U x in Equation (1) determines whether the formulation 
corresponds to a single discrete-continuous (SDC) model or a multiple discrete-continuous 
(MDC) model. The SDC case assumes that the choice alternatives are perfect substitutes; that is, 
the choice of one alternative precludes the choice of others. The MDC case accommodates 
imperfect substitution among goods, thus allowing for the possibility of consuming multiple 
alternatives. A linear utility form with respect to consumption characterizes the perfect 
substitutes (or SDC) case, while a non-linear utility form allowing diminishing marginal utility 

                                                                                                                                                                                                
commodity/service categories. Thus, it is common to use an incomplete demand system, typically in the form of a 
two stage budgeting approach or in the form of the use of a Hicksian composite commodity assumption. In the 
former two stage budgeting approach, separabilility of preferences is invoked, and the allocation is pursued in two 
independent stages. The first stage entails allocation between a limited number of broad groups of consumption 
items, followed by the incomplete demand system allocation of the group expenditure to elementary 
commodities/services within the broad consumption group of primary interest to the analyst (the elementary 
commodities/services in the broad group of primary interest are commonly referred to as “inside” goods). The 
plausibility of such a two stage budgeting approach requires strong homothetic preferences within each broad group 
and strong separability of preferences, or the less restrictive conditions of weak separability of preferences and the 
price index for each broad group not being too sensitive to changes in the utility function (see Menezes et al., 2005). 
In the Hicksian composite commodity approach, the analyst assumes that the prices of elementary goods within each 
broad group of consumption items vary proportionally. Then, one can replace all the elementary alternatives within 
each broad group (that is not of primary interest) by a single composite alternative representing the broad group. The 
analysis proceeds then by considering the composite goods as “outside” goods and considering consumption in these 
outside goods as well as the “inside” goods representing the consumption group of main interest to the analyst. It is 
common in practice in this Hicksian approach to include a single outside good with the inside goods. If this 
composite outside good is not essential, then the consumption formulation is similar to that of a complete demand 
system. If this composite outside good is essential, then the formulation needs minor revision to accommodate the 
essential nature of the outside good. Please refer to von Haefen (2010) for a discussion of the Hicksian approach and 
other incomplete demand system approaches such as the one proposed by Epstein (1982) that we do not consider 
here. In this paper, we will consider incomplete demand systems in the form of the second stage of a two stage 
incomplete demand system with a finite, positive total budget as obtained from the first stage (for presentation ease, 
we will refer to this case as the “inside goods only” case in which at least one “inside” good has to be consumed and 
there are no essential outside goods) or in the form of a Hicksian composite approach with a single outside good that 
is essential and no requirement that at least one of the inside goods has to be consumed (for presentation ease, we 
will refer to this case simply as the “essential outside good” case or even more simply, as the outside good case; if 
the outside good is non-essential, the formulation becomes identical to the case of the “inside goods only” case, 
while if there are multiple outside goods, the situation is a very simple extension of the formulations presented here 
depending on whether the outside goods are all essential, all non-essential, or some combination of essential and 
non-essential). Finally, a complete demand system takes the same formulation as the “inside goods only” 
formulation.  
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with increasing consumption characterizes the imperfect substitutes (or MDC) case. An example 
SDC framework is Hanemann’s (1984) specification: 

*
1

2

( ) ( , ),
K

k k
k

U U x x


 x          (2) 

where *U  is a bivariate utility function and k (k = 2,…, K) represents the quality index (or 

baseline preference) specific to each inside good k, with the first good considered as the outside 
good. This functional form assures that, in addition to the outside good, exactly one inside good 
(k = 2, 3,…, K) is consumed. Hanemann (1984) refers to this as the “extreme corner solution”. 
Examples of MDC frameworks will be discussed later. 

Two approaches have been used to derive demand functions for the consumption 
quantities for the utility maximization problem in (1). The first approach, due to Hanemann 
(1978) and Wales and Woodland (1983), takes a direct approach to solving the constrained 
utility maximization problem in (1) via standard application of the Karush-Kuhn-Tucker (KKT) 
first-order necessary conditions of optimality. Considering the utility function U(x) to be random 
over the population leads to stochastic KKT conditions, which form the basis for deriving 
probabilities for consumption patterns (including corner solutions). This approach is called the 
KKT approach due to the central role played by the KKT conditions (more popularly, the 
approach is referred to as the KT approach, but we use the label “KKT” to give credit to Karush 
who, in an unpublished manuscript, derived the first order optimality conditions in a constrained 
optimization setting even earlier than Kuhn and Tucker). The second approach, due to 
Hanemann (1984) and Lee and Pitt (1986), solves the maximization problem in Equation (1) by 
using “virtual prices” (a method that is dual to the KKT approach), which allows the analysis to 
start with the specification of a conditional indirect utility function. Subsequently, the implied 
Marshallian demand functions are obtained via Roy’s identity (Roy, 1947).2 
 The vast majority of applications in the literature have involved single discrete or SDC 
choices. These use the indirect utility approach as opposed to the KKT approach (i.e., the direct 
utility approach). This is mainly because the KKT approach has been perceived to be difficult to 
use until the past decade. This is primarily due to the absence of practical methods for estimating 
the structural parameters. In particular, the KKT conditions, in a stochastic setting, lead to a 
probability expression for the consumption vector that involves multidimensional integrals of the 
order of the number of goods in the analysis as discussed in Section 3.2 (and, until Bhat, 2005, 
this expression was thought to be analytically intractable). Further, simple and practically 
feasible prediction and welfare analysis methods were not available for models based on the 
KKT approach. However, recent interest in MDC problems has brought renewed attention to the 
KKT approach. Besides, the use of direct utility functions has some advantages:  the relationship 
of the utility function to behavioral theory is more transparent, offering more interpretable 
parameters and better insights into identification issues. This is true even for the SDC case. For 
example, Bunch (2009) shows that the indirect utility function used by Chintagunta (1993) is in 
fact from the linear expenditure system, so the direct utility function is known. Applying the 
KKT approach yields the correct analytical expression for the reservation price in terms of 
parameters from the direct utility function, which has a clear behavioral interpretation. Over the 
                                                            
2 Hanemann (1984) used this approach to derive a variety of SDC model forms consistent with Equation (2). Chiang 
(1991) and Chintagunta (1993) extend Hanemann’s SDC formulation to include the possibility of no inside goods 
being selected by introducing a “reservation price”. In their approach, an inside good is selected only if the quality 
adjusted price of at least one of the inside goods is below the reservation price. See Dubin and McFadden (1984) for 
another, slightly different, way of employing the (conditional) indirect utility approach for SDC choice analysis. 
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past decade, the field has witnessed significant strides in using the KKT approach for modeling 
MDC choices – both for estimation of the parameters for KKT models and for application of the 
models for forecasting and welfare analysis. Thus, in this paper, we focus on the KKT approach 
to modeling MDC choices. Specifically, we review the recent advances and outline an agenda for 
future research. 
 
1.2. Structure of the Chapter 
The rest of this chapter is organized as follows. The next section provides an overview of the 
utility forms used to model MDC choices. Section 3 outlines the econometric structure and KKT 
conditions of optimality that form the basis for deriving the model structure and likelihood 
expressions. Section 4 outlines the specific model structures used in the literature based on 
different specifications of the utility form and the stochastic structure. Section 5 provides a brief 
discussion of the case where the choice alternatives comprise a combination of imperfect and 
perfect substitutes. Section 6 presents methods that enable the use of the KKT-based MDC 
models for forecasting and policy analysis purposes. Section 7 discusses several developments 
on the horizon and the challenges that lie beyond. Section 8 summarizes the book chapter. 
 
2. UTILITY FORMS FOR MODELING MDC CHOICES 
As discussed earlier, non-linear utility forms that allow diminishing marginal utility with 
increasing consumption can be used to model “multiple discreteness” in consumer choices. A 
number of different utility forms have been used in the literature. In this section, we discuss the 
following form used in Bhat (2008) as it subsumes a variety of utility forms used in previous 
studies as special cases: 
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





x         (3)  

In the above utility function, U(x) is a quasi-concave, increasing, and continuously differentiable 
function with respect to the consumption quantity (Kx1)-vector x (xk ≥ 0 for all k),  and k , k  

and k  are parameters associated with good k. The function in Equation (3) is a valid utility 

function if k > 0 and k  ≤ 1 for all k.  Further, for presentation ease, we assume temporarily 

that there is no Hicksian composite outside good that is consumed by all decision makers, so that 
corner solutions (i.e., zero consumptions) are allowed for all the goods k. The possibility of 
corner solutions implies that the term k , which is a translation parameter, should be greater than 

zero for all k. The reader will note that there is an assumption of additive separability of 
preferences in the utility form of Equation (1). More on this assumption later. 
 The form of the utility function in Equation (1) highlights the role of the various 
parameters k , k , and k , and explicitly indicates the inter-relationships between these 

parameters that relate to theoretical and empirical identification issues. The form also assumes 
weak complementarity (see Mäler, 1974), which implies that the consumer receives no utility 
from a non-essential good’s attributes if s/he does not consume it (i.e., a good and its quality 
attributes are weak complements). The functional form proposed by Bhat (2008) in Equation (3) 
generalizes earlier forms used by Hanemann (1978), von Haefen et al. (2004), Phaneuf et al. 
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(2000) and others. Specifically, the utility form of Equation (3) collapses to the following linear 
expenditure system (LES) form when kk   0 :  

 
1

( ) ln ( / ) 1
K

k k k k
k

U x  


 x         (4) 

 
2.1 Role of Parameters in the Utility Specification 

2.1.1 Role of kψ : The role of k  can be inferred by computing the marginal utility of 

consumption with respect to good k, which is: 
1

1
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x

U



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         (5) 

It is clear from above that k  represents the baseline marginal utility, or the marginal utility at 

the point of zero consumption of good k. Alternatively, the marginal rate of substitution between 
any two goods k and l at the point of zero consumption of both goods is /k l  . This is the case 

regardless of the values of k  and k . Thus, a good k with a higher baseline marginal utility is 

more likely to be consumed than a good k’ with a lower baseline marginal utility. 
  
2.1.2 Role of kγ : An important role of the k  terms is to shift the position of the point at which 

the indifference curves are asymptotic to the axes from (0,0,0…,0) to ),...,,,( 321 K  , so 

that the indifference curves strike the positive orthant with a finite slope. This, combined with 
the consumption point corresponding to the location where the budget line is tangential to the 
indifference curve, results in the possibility of zero consumption of good k.  To see this, consider 
two goods 1 and 2 with 1  = 2  = 1, 1  = 2  = 0.5, and 2  = 1. Figure 1 presents the profiles 

of the indifference curves in this two-dimensional space for various values of 1 ( 1  > 0). To 
compare the profiles, the indifference curves are all drawn to go through the point (0,8). The 
reader will also note that all the indifference curve profiles strike the y-axis with the same slope. 
As can be observed from the figure, the positive values of 1  and 2  lead to indifference curves 
that cross the axes of the positive orthant, allowing for corner solutions. The indifference curve 
profiles are asymptotic to the x-axis at y = –1 (corresponding to the constant value of 2  = 1), 

while they are asymptotic to the y-axis at 1x .  

Figure 2 points to another role of the k  term as a satiation parameter. Specifically, the 

figure plots the sub-utility function for alternative k for 0k  and k  = 1, and for different 

values of k . All of the curves have the same slope k  = 1 at the origin point, because of the 

functional form used here. However, the marginal utilities vary for the different curves at kx  > 0. 

Specifically, the higher the value of k , the less is the satiation effect in the consumption of kx . 

Thus, different values of  k  lead to different satiation effects, provided 1k  . 

 
2.1.3 Role of kα : The express role of k  is to reduce the marginal utility with increasing 

consumption of good k; that is, it represents a satiation parameter. When k  = 1 for all k, this 
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represents the case of absence of satiation effects or, equivalently, the case of constant marginal 
utility. The utility function in Equation (1) in such a situation collapses to 

k
kk x , which 

represents the perfect substitutes case. This is the case of single discreteness. As k  moves 

downward from the value of 1, the satiation effect for good k increases. When 0k , the 

utility function collapses to the LES form, as discussed earlier. k  can also take negative values 

and, when k , this implies immediate and full satiation. Figure 3 plots the utility function 

for alternative k for k  = 1 and k  = 1, and for different values of k . Again, all of the curves 

have the same slope k  = 1 at the origin point, and accommodate different levels of satiation 

through different values of k  for any given k  value.  

 
2.2 Empirical Identification Issues Associated with Utility Form 
The discussion in the previous section indicates that k  reflects the baseline marginal utility, 

which controls whether or not a good is selected for positive consumption (or the extensive 
margin of choice). The role of k  is to enable corner solutions, though it also governs the level 

of satiation. The purpose of k  is solely to allow satiation. The precise functional mechanism 

through which k  and k  impact satiation are, however, different; k  controls satiation by 

translating consumption quantity, while k  controls satiation by exponentiating consumption 

quantity. Clearly, both these effects operate in different ways, and different combinations of their 
values lead to different satiation profiles. However, empirically speaking, and as discussed in 
detail in Bhat (2008), it is very difficult to disentangle the two effects separately, which leads to 
serious empirical identification problems and estimation breakdowns when one attempts to 
estimate both k  and k  parameters for each good. In fact, for a given k  value, it is possible to 

closely approximate a sub-utility function profile based on a combination of k  and k  values 

with a sub-utility function based solely on k  or k  values. In actual application, it would 

behoove the analyst to estimate models based on both the k -profile (i.e., a utility function based 

solely on k  values) and the k -profile (i.e., a sub-utility function with based solely on values 

k , with the k  values set to zero), and choose a specification that provides a better statistical 

fit. Alternatively, the analyst can stick with one functional form a priori, but experiment with 
various fixed values of αk for the k -profile and γk for the k -profile. 

 
2.3 Utility Form for Situations with an Outside Good 
Thus far, the discussion has assumed that there is no outside numeraire good (i.e., no essential 
Hicksian composite good). If an outside good is present, label it as the first good which now has 
a unit price of one. Then, the utility functional form needs to be modified as follows: 

 1
1 1 1

21

1
( ) ( ) 1 1

kK
k k

k
k k k

x
U x


   

  

         
   

x      (6) 
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In the above formula, we need 01  , while 0k for k > 1. Also, we need .011 x  The 

magnitude of 1  may be interpreted as the required lower bound (or a “subsistence value”) for 
consumption of the outside good.  

The identification considerations discussed for the “no-outside good” case carries over to 
the “with outside good” case. For example, as in the “no-outside good” case, the analyst will 
generally not be able to estimate both k  and k  for the outside and inside goods. Another 

important normalization necessary for parameter identification, regardless of the presence or 
absence of the outside good, is that the coefficients of explanatory variables (including the 
constants) in the baseline utility parameters k (k = 1, 2,…, K) should be normalized (for 

example, to zero) for at least one alternative. In situations with a Hicksian composite outside 
good, the natural candidate for such normalization is the baseline marginal utility parameter of 
the outside good. This identification condition is similar to that in the standard discrete choice 
model, though the origin of the condition is different between standard discrete choice models 
and the multiple discrete-continuous models. In standard discrete choice models, individuals 
choose the alternative with the highest indirect utility, so that all that matters is relative utility. In 
multiple discrete-continuous models, the origin of this condition is the adding up (or budget) 
constraint associated with the quantity of consumption of each good. 
 
3. ECONOMETRIC STRUCTURE AND KARUSH-KUHN-TUCKER (KKT) 
CONDITIONS OF OPTIMALITY 
The KKT approach employs a direct stochastic specification by assuming the utility function 
U(x) to be random over the population. In all recent applications of the KKT approach for 
multiple discreteness, a multiplicative random element is introduced to the baseline marginal 
utility of each good as follows: 

kezz kkk
  )(),( ,         (7) 

where kz  is a set of attributes characterizing alternative k and the decision maker, and k  

captures idiosyncratic (unobserved) characteristics that impact the baseline utility for good k.  
The exponential form for the introduction of the random term guarantees the positivity of the 
baseline utility as long as 0)( kz . To ensure this latter condition, )( kz  is further 

parameterized as )exp( kz  , which then leads to the following form for the baseline random 

utility associated with good k: 

)exp(),( kkkk zz   .         (8) 

The kz  vector in the above equation includes a constant term. The overall random utility function 

of Equation (3) then takes the following form: 
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x        (9) 

As indicated earlier, the part of   (i.e., the coefficients of explanatory variables) corresponding 
to at least one alternative must be normalized to zero. 
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In the presence of a Hicksian composite outside good, arbitrarily designating the first 
alternative as the outside good, the overall random utility function can be written as: 

   1
1 1 1

1

1
( ) exp( ) ( ) exp( ) 1 1

k

k k
k k

k k k

x
U x z


    

  

          
   

x    (10) 

Note that, for identification, 1 1( , )z   is specified as 1e , by normalizing the coefficients of 1z  to 

zero. But some studies (particularly those in the environmental economics literature) impose a 
stronger normalization by considering the utility of the outside good as being deterministic (i.e., 

1  = 0) and setting 1 1( , ) 1z   . Then the overall random utility function becomes: 

   1
1 1
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  

          
   

x     (11) 

While the above normalization is not theoretically inappropriate, it is unnecessary. Further, it is 
arbitrary to set a good’s utility contribution to be deterministic. This is particularly a problem in 
situations with no Hicksian composite outside good, where the analyst has to arbitrarily choose 
the utility contribution of any one alternative to be deterministic. Further, as demonstrated in 
Bhat (2008), the probability expressions and probability values for the consumption pattern 
depend on which choice alternative is chosen for this normalization. Finally, in contexts with an 
outside good, including the stochastic term on the outside good 1  helps in capturing correlation 
among the random utilities of the inside goods. Such correlation helps in inducing greater 
competition among the consumptions of the inside goods, when compared to the competition 
between the inside goods and the outside good. Thus, we prefer the specification with 
stochasticity in the utility contribution of all choice alternatives, including that of the outside 
good in situations with an outside good.  
 
3.1 Optimal Consumptions 
The analyst can solve for the optimal expenditure allocations by forming the Lagrangian and 
applying the Karush-Kuhn-Tucker (KKT) conditions. For the utility form in Equation (10), the 
Lagrangian function for the problem is:3 

   1
1 1 1

2 11

1
exp( ) ( ) exp( )  1 1

kK K
k k

k k k k
k kk k

x
L x z p x E


     

   

                
    

  , (12) 

where   is the Lagrangian multiplier associated with the budget constraint (that is, it can be 
viewed as the marginal utility of total expenditure or income). The KKT first-order conditions 
for the optimal consumptions (the *

kx  values) are given by: 

  1 1*1
1 1

1

exp( )ε
x

p


 


  , since *

1 0x   

                                                            
3 Note that the subsequent discourse is for the case with a Hicksian composite outside good that is essential. 
However, the derivations carry over to the case without an outside good in a straightforward manner. 
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1*exp( )
 1

k

k k k

k k

β z ε x

p







  

  
 

, if * 0kx  , k = 2,…, K     (13) 

1*exp( )
1

k

k k k

k k

β z ε x

p







  

  
 

, if * 0kx  , k = 2,…, K 

In the above KKT conditions, the first condition is for the outside good, while the next two sets 
of conditions are for the inside goods (k = 2, 3,…, K). Note that the price of the Hicksian outside 
numeraire good 1p  is unity. 

The optimal demand satisfies the conditions in Equation (13) plus the budget constraint
*

k k
k

p x E .  Substituting for the expression of   from the KKT condition for the outside good 

into the KKT conditions for the inside goods, and taking logarithms, one can rewrite the KKT 
conditions as: 

11   VV kk  if * 0kx   (k = 2, 3,…, K) 

11   VV kk  if * 0kx   (k = 2, 3,…, K),       (14) 

where 

 *
1 1 1 1 1( 1) ln lnV x p     , and 

*

( 1) ln 1 lnk
k k k k

k

x
V z p 


 

     
 

 (k = 2, 3,…, K). 

 
3.2 General Econometric Model Structure and Identification 
To complete the model structure, the analyst needs to specify the error structure. In the general 
case, let the joint probability density function of the k  terms be f( 1 , 2 ,…, K ). Then, the 

probability that the individual consumes the first M of the K goods is: 

1 1 1 1 2 1 1 1 1 1 1

1 1 2 1

* * * *
1 2 3

1 1 2 1 1 3 1 1 1 1 2 1

1

( ,  ,  ,  ...,  ,  0,  0,  ...,  0)  | |    

( ,  ,  ,  ...,  ,  ,  ,  ...,  ,  )

M M K K

M M K K

V V V V V V V V

M

M M M K K

K K

P x x x x J

f V V V V V V

d d

   

    

       
 

  

  

       

    

  





     

    

2 1 1...  ,M Md d d   

 (15)  

where J is the Jacobian whose elements are given by (see Bhat, 2005): 

1 1 1 1 1
* *

1 1

[ ] [ ]
;i i

ih
h h

V V V V
J

x x

 

 

    
 

 
 i, h = 1, 2, …, M – 1.     (16) 

The probability expression in Equation (15) is a (K-M+1)-dimensional integral. The 
dimensionality of the integral can be reduced by one by noticing that the KKT conditions can 
also be written in a differenced form. To do so, define 11

~   kk , and let the implied 

multivariate distribution of the error differences be )~,...,~,~( 13121 Kg  . Then, Equation (11) may 

be written in the equivalent (K-M)-integral form shown below: 
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1 1 1 2 1 1 1

1,1 2,1 1,1 ,1

* * * *
1 2 3

1 2 1 3 1 1,1 2,1 ,1 ,1 1,1 1,1

( ,  ,  ,  ...,  ,  0,  0,  ...,  0)  | |     

( ,  ,  ...,  ,  ,  ,  ...,  ) ...

M M K K

M M K K

V V V V V V V V

M

M M M K K K M

P x x x x J

g V V V V V V d d d

   

     

  

  

   

   

   



  

   
   



     

  (17) 

 
The equation above indicates that the probability expression for the observed optimal 
consumption pattern of goods is completely characterized by the (K-1) error terms in the 
differenced form. Thus, all that is estimable is the (K-1)×(K-1) covariance matrix of the error 
differences. In other words, it is not possible to estimate a full covariance matrix for the original 
error terms ),...,,( 21 K  because there are infinite possible densities for f(.) that can map into 
the same g(.) density for the error differences (see Train, 2003, page 27, for a similar situation in 
the context of standard discrete choice models). There are many possible ways to normalize f(.) 
to account for this situation. For example, one can assume an identity covariance matrix for f(.), 
which automatically accommodates the normalization that is needed. Alternatively, one can 
estimate g(.) without reference to f(.).  
 In the general case when the unit prices kp  vary across goods, it is possible to estimate 

2/)1(  KK  parameters of the full covariance matrix of the error differences, as just discussed 
(though the analyst might want to impose constraints on this full covariance matrix for ease in 
interpretation and stability in estimation). However, when the unit prices are not different among 
the goods, an additional scaling restriction needs to be imposed. A typical way to do is by 
normalizing the scale of the random error terms (i.e., the scale of the k  terms) to one.  

 
4. SPECIFIC MODEL STRUCTURES 

4.1 The Multiple Discrete-Continuous Extreme-Value (MDCEV) Model  
Following Bhat (2005, 2008), consider an extreme value distribution for k  and assume that k  

is independent of kz  (k = 1, 2,…, K). The k ’s are also assumed to be independently distributed 

across alternatives with a scale parameter of   (  can be normalized to one if there is no 
variation in unit prices across goods).  Let kV  be defined as follows: 

 
 

*
1 1 1 1 1

*

*

( 1) ln ln

( 1) ln 1 ln   ( 2, 3,..., ), when the -profile is used, and

ln 1 ln  ( 2, 3,..., ), when the -profile is used.

k k k k k

k
k k k

k

V x p

V z x p k K

x
V z p k K

 

  

 


   

     

 
     

 

        (18) 

As discussed earlier, it is generally not possible to estimate the kV  form in Equation (14), 

because the k  terms and k  terms serve a similar satiation role.  

From Equation (17), the probability that the individual allocates expenditure to the first 
first M of the K goods (M ≥ 1) with a corresponding consumption vector 

)0 ..., ,0 ,0 , ..., , ,,( **
3

*
2

*
1

*
Mxxxxx  is:                               
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 
1

1

* * * *
1 2 3

1 1 1 1 1
1

2 1

 , ,  ,  ...,  ,  0,  0,  ...,  0

1 1
 | |  ,

M

M K
i s

i s M

P x x x x

V V V V
J d





    
    



  


                                
 

  (19) 

where   is the standard extreme value density function,   is the standard extreme value 
cumulative distribution function, and | |J  is the determinant of the Jacobian matrix obtained 
from applying the change of variables calculus between the stochastic KKT conditions and the 
consumptions, given by the following expression (Bhat, 2008): 

*
111

11
| |  ,  where  

M M
i i

i i
ii i i i

p
J f f

p f x




    
          

       (20) 

The integral in Equation (19) collapses to a surprisingly simple closed form expression providing 
the following overall expression (Bhat, 2008): 

 
/

* * * * 1
1 2 3 1

111 /

1

1 1
, ,  ,  ...,  ,  0,  0,  ...,  0 . . ( 1)!

i

k

M
V

M M
i i

M i MM K
ii i V

k

e
p

P x x x x f M
p f

e













 
 

                   





 (21) 

The reader will note that the above probability expression can be used even in contexts without 
an essential Hicksian composite outside good. The only difference in the probability expressions 
between the two contexts is in how 1V  is defined. Specifically, in situations without an essential 

Hicksian composite outside good, 1V  is defined in the same fashion as kV  (k = 2, 3,…, K) are 

defined in Equation (18). Further, the expression in Equation (21) is dependent on the unit price 
of the good that is used as the first one (see the 1/p1 term in front). In particular, different 
probabilities of the same consumption pattern arise depending on the good that is labeled as the 
first good (note that any good that is consumed may be designated as the first good).4 In terms of 
the likelihood function, the 1/p1 term can be ignored, since it is simply a constant in each 
individual’s likelihood function. Thus, the same parameter estimates will result independent of 
the good designated as the first good for each individual. 

In the case when M = 1 (i.e., only one alternative is chosen), there are no satiation effects 
( k =1 for all k) and the Jacobian term drops out (that is, the continuous component drops out, 

because all expenditure is allocated to good 1). Then, the model in Equation (21) collapses to the 
standard MNL model. Thus, the MDCEV model is a multiple discrete-continuous extension of 
the standard MNL model. 

 
4.2 Closed form extensions of the Multiple Discrete-Continuous Extreme-Value (MDCEV) 
Model  
Thus far, we have assumed that the k  terms are independently and identically extreme value 

distributed across alternatives k. The analyst can extend the model to allow correlation across 

                                                            
4 This is not an issue in contexts with a numeraire Hicksian composite outside good because p1= 1. 
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alternatives using a generalized extreme value (GEV) error structure. The advantage of the GEV 
structure is that it results in closed-form probability expressions for any and all consumption 
patterns.  
 
4.2.1 The MDCNEV Model: Pinjari and Bhat (2010) formulate a special two-level nested case 
of the MDCGEV model with a nested extreme value distributed error structure that has the 
following joint cumulative distribution: 

 
th

1 2
1 n e s t

( , , . . , ) e x p e x p /
KS

K i
i

F


    
 

  
    
   
 

s
ss s

   (22) 

In the above expression, s ( 1,2,..., )KS is the index to represent a nest of alternatives, KS  is the 

total number of nests the K alternatives belong to, and (0 1; 1,2,..., )KS   s s s  is the 

(dis)similarity parameter introduced to induce correlations among the stochastic components of 

the utilities of alternatives belonging to the 
ths nest. This error structure assumes that the nests 

are mutually exclusive and exhaustive (i.e., each alternative can belong to only one nest and all 
alternatives are allocated to one of the SK nests). 

Without loss of generality, let 1,2,..., MS be the nests the M chosen alternatives belong to, 

and let 1 2, , ...,
MSq q q  be the number of chosen alternatives in each of the SM nests (thus, 

1 2 ...
MSq q q M    ). Using the nested extreme value error distribution assumption specified in 

Equation (22) (and the above-identified notation), Pinjari and Bhat (2010) derived the following 
expression for the multiple discrete-continuous nested extreme value (MDCNEV) model: 

th1

1

th
th

* * *
1 2

nest{chosen alts}

1 1 1

1 nest 1 nest

( , ,... ,  0,...,0)

| | ... ...

i
i

i

M

iM ik

M

q r

VV

q Sq
ii

qVS Vr r = S

= i i

P x x x

ee

J

e e







 

 



 

  



 
  
  

    
                      


  

  
s

s s

s

s s
s

s
s

s s

s

s

s s s

1

1 11

( ) ( 1) 1 !
S MM M

SM

q S S

r
r ==

sum X q r


 
 
 
         

   
 
 
  

  s ss ss

 (23) 

In the above expression, ( )rsum X s is the sum of elements of a row matrix rX s (see Appendix A 

of Pinjari and Bhat, 2010 for a description of the form of the matrix rX s ). 
 
4.2.2 The MDCGEV Model: More recently, Pinjari (2011) formally proved that the existence of, 
and derived, the closed form probability expressions for MDC models with error structure based 
on McFadden’s (1978) GEV structure. To do so, he expressed the probability expression in 
Equation (15) as an integral of an Mth order partial derivative of the K-dimensional joint 
cumulative distribution function (CDF) of the error terms 1 2( , ,.., )K   : 
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1 11

* *
1 1 2 1

1 , 1,2,...,

( ,..., , 0,..., 0) | | ( , ,..., ) d
...  

i i

M K
M V V i K

M
P x x J F

 

   
 

    





           

   (24) 

where 1 2( , ,..., )KF     is the joint CDF of the error terms 1 2( , ,.., )K    specified based on 

McFadden’s (1978) GEV form as below: 

 1 2
1 2( , ,.., ) exp , ,..., K

GEV KF G e e e                 (25) 

where G is a non-negative function with the following properties: 

1.  1,... ..., 0, 0 ( 1,2,..., )i K iG y y y y i K     

2. G is homogeneous of degree 0  , that is  1 1,... ..., ( ,... ..., )i K i KG ay ay ay a G y y y , 

3.  1lim ,... ..., , 1, 2,...,
iy i KG y y y i K     , and 

4.   1

1

( ,... )
1 0, 0 ( 1, 2,..., )

...  

M K
i

M

M G y y
y i K

y y
    

 


. 

He then derived a general, closed form for the probability expressions as below:   

 

 
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2 2 2
12 3 1 23 1 2 ( 1)1
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 
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 
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 
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          (26) 

where  
1( ,.., )

,
 

K

i

V V

i V

H
H

e

e e



 1

1123...

( ,.., )
,

..  

K

n

V V
n

n VV

nH
H

e e

e e


 


 and all other terms are defined 

similarly5.  
Recognizing that working with the above general form of probability expressions 

becomes difficult in situations with complex covariance structures and a large set of choice 
alternatives (because of the sheer number of terms in the expression), Pinjari (2011) derived 

                                                            
5 G and H are similar functions, but with different arguments; G represents ),...,( 1 neeG   , whereas H represents  

)..,,..( 1 ni VVV eeeG . Note from the   signs that the sign in front of each mixed partial derivative term depends on the 

number of partial derivatives in the term and the number of chosen alternatives M. Also note that the model 
structures for MDCNEV and MDCGEV are derived for the case without price variation across choice alternatives. 
One can extend these structures for situations with price variation in a straightforward fashion. 
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compact probability expressions for a variety of cross-nested error structures. The reader is 
referred to this paper for further details. 
 
4.3 The Mixed MDCEV Model 
The MDCGEV structure is able to accommodate flexible correlation patterns. However, it is 
unable to accommodate random taste variation, and it imposes the restriction of equal scale of 
the error terms. Incorporating a more general error structure is straightforward through the use of 
a mixing distribution, which leads to the Mixed MDCEV (or MMDCEV) model. Specifically, 
the error term, k , may be partitioned into two components, k  and k . The first component, 

k , can be assumed to be independently and identically Gumbel distributed across alternatives 

with a scale parameter of  . The second component, k , can be allowed to be correlated across 

alternatives and to have a heteroscedastic scale. Let ),...,,( 21  K , and assume that   is 
distributed multivariate normal, ~ (0, )N  . 

For given values of the vector  , one can follow the discussion of the earlier section and 
obtain the usual MDCEV probability that the first M of the k goods are consumed. The 
unconditional probability can then be computed as: 

 
( )/

* * * 1
1 2 1

( )/

1

1
, ,...,  ,  0,  ...,  0 | |  ( 1)! ( ).

i i

k k

M
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M MM K
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e
P x x x J M dF

e

 

 














 
 
         




   (27) 

where F is the multivariate cumulative normal distribution.  
Other distributions may also be used for η. Note that the distribution of η can arise from 

an error components structure or a random coefficients structure or a combination of the two, 
similar to the case of the usual mixed logit model. Thus, the model in Equation (27) can be 
extended in a conceptually straightforward manner to also include random coefficients on the 
independent variables kz , and random-effects (or even random coefficients) in the k  satiation 

parameters (if the   profile is used) or the k  parameters (if the   profile is used). 

 
4.4 The Multiple Discrete-Continuous Probit (MDCP) Model 
The choice of extreme value (either EV or GEV) stochastic specification is driven by 
convenience (of analytical tractability) rather than theory. A multivariate normally (MVN) 
distributed stochasticity assumption leads to complex likelihood functions, one reason why the 
KKT approach did not gain traction for empirical analysis until recently. Attempts have been 
made to address this issue by using simulation methods such as the GHK simulator (see Kim et 
al., 2002) and Bayesian estimation methods. However, the GHK and other such simulators 
become computationally impractical as the dimensionality of integration increases with the 
number of alternatives. Bayesian estimation methods can also be computationally intensive and 
saddled with convergence-determination issues. Thus, no study has been able to estimate KKT 
demand systems with multivariate normal (MVN) distributions beyond a small number of 
alternatives.  

Notwithstanding the estimation difficulties, there are notable advantages of using an 
MVN error distribution. First, the MVN error kernel makes it easy to incorporate general 
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covariance structures as well as random coefficients, as long as the number of choice alternatives 
is not too large. Second, an appealing feature of MVN errors is the possibility of negative 
correlations among the utilities of different alternatives (as opposed to MEV errors, which allow 
only positive dependency). This can potentially be exploited to capture situations where the 
choice of one alternative may reduce (if not preclude) the likelihood of choosing another, where 
the pattern of substitution is fundamentally different from the substitution due to satiation effects. 
Given these advantages, we show below that the probability expression of the MDCP model 
involves the evaluation of a multivariate normal cumulative distribution function (MVNCDF). 

Equation (17) provides the general expression for consumption probabilities for an MDC 
model based on KKT conditions of random utility maximization. One can rewrite the probability 
expression using a differenced-errors form as below:  

 
 

2,1 1 2 3,1 1 3 ,1 1* * *
1 2

1,1 1 1 2,1 1 2 ,1 1

( ), ( ),..., ( ) ,
( , ,..., , 0,..., 0) | |

( ), ( ), ..., ( )

M M

M

M M M M K K

V V V V V V
P x x x J P

V V V V V V

  

     

      
  
       

  

  
(28) 

In the above expression,  2,1 3,1 ,1 1,1 ,1, ,..., , ,...,M M K        
 
is a K-1 dimensional vector of error 

differences following a multivariate normal distribution with a zero mean vector μ  (all elements 
in μ  are zeros), and a variance-covariance matrix  . For later use, partition this K-1 
dimensional vector into two smaller vectors A  and B, where 2,1 3,1 ,1{ , , ..., }M     A  and 

1,1 2,1 ,1{ , , ..., }M M K      B .  Thus, the μ  and   matrices can also be partitioned as: 
 

  
 

1

2

μ
μ

μ
, 

and 11 12

21 22

  
     

. In the partition of  , 11  and 22  are the variance-covariance matrices of 

A  and B, respectively, while 12  and 21  contain the covariance terms between the elements in

A and those in B. 
Now, express the MDCP probability expression in Equation (28) as: 

 * * *
1 2( , ,..., , 0,..., 0) | | P ,MP x x x J  a bA = B <        (29) 

Where, 1 2 1 3 1{ , ,..., }MV V V V V V   a  and 1 1 1 2 1{ , ,..., }M M KV V V V V V    b .  

One can express the above expression as a product of marginal and conditional 
probabilities: 

   * * *
1 2( , ,..., , 0,..., 0) | | .P .P |MP x x x J a b aA = B < A =      (30) 

To simplify the conditional probability expression in the above expression, we utilize a property 
of multivariate normal (MVN) distribution that the distribution of B conditional on A = a, is 
another MVN distribution as given below (Tong, 1990. pp 35): 

 ( | ) ,N a μ�B A = , where  1
2 21 11 1

   μ μ a μ , and 1
22 21 11 12

        (31) 

In the above expression, since 1μ  and 2μ are zero-vectors, one can write 1
21 11

  μ a . 
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Using the above result, the conditional probability expression in Equation (30) can be 
expressed as Pr( | ) Pr( )b a bB < A = C <  where C is an MVN distribution as described above. 
Then, the MDCP consumption probability can be expressed as:  

   * * *
1 2( , ,..., , 0,..., 0) | | .P .PMP x x x J aA = C < c       (32) 

In the above joint probability expression, the marginal probability  P aA = is a multivariate 

normal probability distribution function (pdf) with a simple closed form expression, where as the 
MVNCDF  P cC <  does not have a closed form. 

Next, write the MVNCDF Pr( )bC < in standardized form as below:  

 1 1 2 2

Pr( ) P

P ,  ,..., K M K MW w W w W w 

   
 

   

μ b μ
b

σ σ

C - -
C < <

      (33) 

where,  1 2, ,..., K MW W W  is a vector of standardized, normally distributed random variables in 

μ

σ

C -
 and  1 2, ,..., K Mw w w   is a vector of scalars in 

b μ

σ

-
. Similarly, μ  = 1( ,..., ,..., )i K M    is 

a vector of means and σ  = 1( ,..., ,..., )i K M     is a vector of standard deviations6 of the normally 

distributed random variables in C .  
The problem now boils down to approximating the MVNCDF in Equation (33). In the 

recent past, there has been some evidence that using analytical approximations (as opposed to 
simulation) for evaluating the MVN cumulative distribution function can help in easier 
estimation of single discrete choice models (e.g., the multinomial probit model; see Bhat and 
Sidharthan, 2011). Bhat et al. (2012) show that such analytical approximation methods can help 
in the estimation of MDCP models as well (i.e., MDC models with MVN errors). The 
performance of different analytical approximation methods to evaluate the MVNCDF to estimate 
the parameters of the MDCP models is an open avenue for further research. 
 
5. THE JOINT MDCEV-SINGLE DISCRETE CHOICE MODEL 
The MDCEV model and its extensions discussed thus far are suited for the case when the 
alternatives are imperfect substitutes, as recognized by the use of a non-linear utility that 
accommodates a diminishing marginal utility as the consumption of any alternative increases. 
However, there are many instances where the choice situation is characterized by a combination 
of imperfect and perfect substitutes in the choice alternative set. The MDCEV model needs to be 
modified to handle such a combination of a multiple discrete-continuous choice among the 
imperfect substitutes, as well as a single choice of one alternative each from each subset of 
perfect substitutes. We do not discuss this case here due to space constraints, but the reader is 
referred to Bhat et al. (2009) and Bhat et al. (2006) for such formulations. Both these studies by 
Bhat and co-authors assume the absence of price variation across the perfect substitutes. 
Formulation of KKT model systems to consider price variation across imperfect substitutes as 
well as perfect substitutes is a potentially fruitful avenue for further research. 
 

                                                            
6 

i  is the square root of the iith element of the covariance matrix  . 
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6. PREDICTION AND WELFARE ANALYSIS 
Thanks to the above advances, several empirical applications have appeared in the recent 
literature using the KKT approach to model MDC choices. These applications cover a wide 
range of empirical contexts, including individuals’ time-use analysis, household expenditure 
patterns, household vehicle ownership and usage, household energy consumption, recreational 
demand choices, and valuation of a variety of environmental goods (e.g., fish stock, air quality, 
water quality). One reason why the KKT approach did not gain much attention until the recent 
decade was the difficulty of estimating the model parameters. But we are now able to easily 
estimate KKT demand systems with a large number of choice alternatives (see Van Nostrand et 
al., 2013 for a model with 211 choice alternatives). Another reason why the KKT approach has 
not gained popularity is the lack of simple methods to apply the models for forecasting and 
policy analysis purposes. This section reviews the recent advances aimed to fill that gap.  

Once the model parameters are estimated, prediction exercises or welfare analyses with 
KKT-based MDC models involve solving the constrained, non-linear random utility 
maximization problem in Equation (1) (or its dual form) for each consumer. In the presence of 
corner solutions (i.e., multiple discreteness), there is no straight-forward analytic solution to this 
problem. The typical approach is to adopt a constrained non-linear optimization procedure at 
each of several simulated values drawn from the distribution of the stochastic error terms (i.e., 
the k  terms). The constrained optimization procedure itself has been based on either 

enumerative or iterative techniques. The enumerative technique (used by Phaneuf et al., 2000) 
involves an enumeration of all possible sets of alternatives that the consumer can potentially 
choose. This brute-force method becomes computationally impractical as the number of choice 
alternatives increases.  

von Haefen et al. (2004) proposed a numerical bisection algorithm based on the insight 
that, with additively separable utility functions, the optimal consumptions of all goods can be 
derived if the optimal consumption of the outside good is known. Specifically, conditional on 
unobserved heterogeneity, they iteratively solve for the optimal consumption of the outside good 
(and that of other goods) using a bisection procedure. They begin their iterations by setting the 
lower bound for the consumption of the outside good to zero and the upper bound to be equal to 
the budget. The average of the lower and upper bounds is used to obtain the initial estimate of 
the outside good consumption. Based on this, the amounts of consumption of all other inside 
goods are computed using the KKT conditions. Next, a new estimate of consumption of the 
outside good is obtained by subtracting the budget on the consumption of the inside goods from 
the total budget available. If this new estimate of the outside good is larger (smaller) than the 
earlier estimate, the earlier estimate becomes the new lower (upper) bound of consumption for 
the outside good, and the iterations continue until the difference between the lower and upper 
bounds is within an arbitrarily designated threshold. To circumvent the need to perform 
predictions over the entire distribution of unobserved heterogeneity (which can be time-
consuming), von Haefen et al. condition on the observed choices. 

In a recent paper, Pinjari and Bhat (2011) undertook analytic explorations with the KKT 
conditions of optimality that shed new light on the properties of Bhat’s MDCEV model with 
additive utility functions. Specifically, they derive a property that the price-normalized baseline 
marginal utility (i.e., k kp ) of a chosen alternative must be greater than the price-marginalized 

baseline marginal utility of an alternative that is not chosen. Further, they discuss a fundamental 
property of several KKT demand model systems in the literature with additively separable utility 
form and a single linear binding constraint. Specifically, the choice alternatives can always be 
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arranged in the descending order of a specific measure that depends on the functional form of the 
utility function. Consequently, when all the choice alternatives are arranged in the descending 
order of their baseline marginal utility, and the number of chosen alternatives (M) is known, it is 
a trivial task to identify the chosen alternatives as the first M alternatives in the arrangement. 
Based on this insight, Pinjari and Bhat (2011) propose computationally efficient prediction 
algorithms for different forms of the utility function in Equation (3). One such forecasting 
algorithm, for the utility form with equal k  parameters across all choice alternatives (i.e., 

1,2,...,k k K    ) for choice situations with an outside good is outlined in four broad steps 

below. For predictions algorithms for other additively separable utility forms, the reader is 
referred to Pinjari and Bhat (2011). 

Step 0: Assume that only the outside good is chosen and let the number of chosen goods M = 1. 

Step 1: Given the input data ( kz , kp ), model parameters ( , k , ), and the simulated error term 

( k ) draws, compute the price-normalized baseline utility values  k kp  for all 

alternatives. Arrange all the K alternatives available to the consumer in the descending 
order of the  k kp  values (with the outside good in the first place). 

Step 2: Compute the value of   using the following equation. Go to step 3. 
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Step 3: If 1 1( / )M Mp     (this condition represents the KKT condition for the M+1th 

alternative) 

Compute the optimal consumptions of the first M alternatives in the above descending 
order using the following expressions. Set the consumptions of other alternatives as zero 
and stop. 
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Else, (if 1 1( / )M Mp    , set M = M+1 and go to step 4. 

Step 4: If (M = K), Compute the optimal consumptions using Equations (35) and (36) and stop. 

Else, (if M < K), go to step 2. 
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The algorithm outlined above can be applied a large number of times with different simulated 
values of the k  terms to sufficiently cover the simulated distribution of unobserved 

heterogeneity (i.e., the k  terms) and obtain the distributions of the consumption forecasts. 

The above discussion is primarily oriented toward using KKT-based MDC models for 
prediction, but does not extend the discussion to include welfare analysis. For a discussion of 
how such prediction algorithms can be used for welfare analysis, see von Haefen and Phaneuf 
(2005).  
 
7. FUTURE DIRECTIONS 
In the recent past, there has been an increasing recognition of the need to extend the basic 
formulation of consumer’s utility maximization in Equation (1) in the following directions: 

(1) Flexible functional forms for the utility specification, 

(2) Flexible stochastic specifications for the utility functions, 

(3) Flexibility in the specification of constraints faced by the consumer, 

Each of these directions is discussed next. 
 
7.1 Flexible, Non-additive Utility Forms 
Most KKT models in the literature assume that the direct utility contribution due to the 
consumption of different alternatives is additively separable. Mathematically, this assumption 
implies that: U(x1,…,xK) = U1(x1) +…+ UK(xK), and greatly simplifies the task of model 
estimation and welfare analysis. However, this assumption imposes strong restrictions on 
preference structures and consumption patterns. First, the marginal utility of one alternative is 
independent of the consumption of another alternative. This assumption, with an increasing and 
quasi-concave utility function, implies that goods can be neither inferior nor complementary; 
they can only be substitutes. Thus, for example, one cannot model a situation where the 
consumption of one good (e.g., a new car) may increase the consumption of other goods (e.g., 
gasoline). Third, even flexible substitution patterns in the consumption of different goods can be 
achieved only by correlating the stochastic utility components of different goods, but not through 
an explicit functional form. To overcome the restrictions identified above, it is critical to develop 
tractable estimation methods with flexible, non-additively separable utility functions.  

There have been a handful of recent efforts in this direction. For example, building on 
Bhat’s additively separable linear Box-Cox utility form, Vasquez-Lavin and Hanemann (2009) 
presented a general utility form with interaction terms between sub-utilities, as below: 
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 x  (37) 

In the above expression, the second term induces interactions between pairs of goods (m,k) and 
includes quadratic terms (when m = k). These interaction terms allow the marginal utility of a 
good (k) to depend on the consumption of other goods (m). Specifically, a positive (negative) 
value for mk implies that m and k are complements (substitutes). However, the quadratic nature 

of the utility form does not maintain global consistency (over all consumption bundles) of the 
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strictly increasing and quasi-concave property. Specifically, for certain parameter values and 
consumption patterns, the utility accrued can decrease with increasing consumption, or the 
marginal utility can increase with increasing consumption, which is theoretically inconsistent. 
Bhat and Pinjari (2010) show how a simple normalization by setting 0km   when m = k in 

Equation (37) can resolve the issues of theoretical (in)consistency and parameter 
(un)identification. Other efforts on accommodating complementarity in consumption include Lee 
et al. (2010) who propose simpler interaction terms using log(quantities), and Gentzkow (2007) 
who accommodates interactions in indirect utility functions. 

Despite the above efforts, there are still unresolved conceptual and methodological issues 
pertaining to: (1) the form of non-additive utility functions, (2) the specification of stochasticity 
in non-additive utility functions, (3) estimation of parameters with increasing number of choice 
alternatives, and (4) interpretation of the resulting dependency patterns in consumption. 
Resolving these issues will be a big step forward in enhancing the behavioral realism of KKT-
based RUM MDC models. Further, within the context of non-additively separable preferences, it 
is important to recognize asymmetric dependencies in consumption. For example, the purchase 
of a new car may lead to increased gasoline consumption, but not the other way round.  
 
7.2 Flexible Stochastic Specifications 
The above discussion was in the context of the form of the utility function. But there is potential 
for improving the stochastic specification as well. For example, most studies assume IID extreme 
value random error terms in the utility function. Recent advances on relaxing the IID assumption, 
specifically via employing multivariate extreme value (MEV) distributions, have been discussed 
in Section 4.2. Although we are now able to estimate KKT-based RUM MDC models with 
general MEV stochastic distributions, no clear understanding exists on how different stochastic 
specifications and utility functional forms influence the properties of KKT models. Examining 
the substitution patterns implied by the different stochastic assumptions in KKT-based MDC 
models is a useful avenue for research. Further, the estimation of the MDCP model with MVN 
distributed stochasticity (as discussed in Section 4.4) is an important avenue for investigation. 
 
7.3 Multiple Constraints 
Most MDC model applications to date consider only a single linear binding constraint as 
governing the consumption decisions (e.g., the linear constraint in Equation 1). This stems from 
an implicit assumption that only a single resource is needed to consume goods. However, in 
numerous empirical contexts, multiple types of resources, such as time, money and space, need 
to be expended to acquire and consume goods. While the role of multiple constraints has been 
long recognized in microeconomic theory (see Becker, 1965), the typical approach to 
accommodating the different constraints has been to convert them all into a single effective 
constraint. For example, the time constraint has been collapsed into the money constraint using a 
monetary value of time. In many situations, however, it is important to consider the different 
constraints in their own right, because resources may not always be freely exchangeable with 
each other. To address this issue, a handful of recent studies (Satomura et al., 2011; Castro et al., 
2012; Pinjari and Sivaraman, 2012) have provided model formulations to accommodate multiple 
linear constraints with additive utility functional forms. Satomura et al. (2011) provided a 
formulation to account for the role of money and space constraints in consumers’ decisions on 
soft drink purchases. Castro et al. (2012) provide a general treatment of the issue by providing 
formulations for different scenarios such as complete demand systems (i.e., a case without the 



21 

need of a Hicksian composite good), and incomplete demand systems (a case with the Hicksian 
composite good). Pinjari and Sivaraman (2012) provide a time- and money-constrained 
formulation in the context of households’ annual vacation travel destination and mode choices.  
 
7.4 Beyond Simple, Linear Constraints 
The above discussion suggests that we have just begun to move toward models with multiple 
constraints. It is worth noting, however, that most of the literature on MDC modeling is geared 
toward simple, linear constraints that do not represent the complexity of situations consumers 
face in reality. There are several reasons why linear constraints do not hold. First, linear 
constraints represent a constant price per unit consumption (or a constant rate of resource-use). 
In many situations, however, prices vary with the amount of consumption leading to non-linear 
budget constraints. A classic example of such non-linear budgets is block pricing typically used 
in energy markets (e.g., electricity pricing). While the issue has long been recognized in the 
classical econometric literature on estimating demand functions, it is yet to be given due 
consideration in MDC choice studies. Second, linear constraints do not accommodate fixed costs 
(or setup costs) which cannot be converted into a constant price per unit consumption. For 
example, travel cost to a vacation destination is a fixed cost, unlike the lodging costs at the 
destination which can be treated as variable with a constant price per night.  

Solving the consumer’s direct utility maximization problem with non-linear constraints 
can become rather tedious, because the KKT conditions alone may not be sufficient anymore. In 
a recent study, Parizat and Shachar (2010) employ an enumeration approach to solve a direct 
utility maximization problem in the context of individuals’ weekly leisure time allocation with 
fixed costs (e.g., ticket costs of going to a movie, the price of a meal). They acknowledge rather 
large computation times to estimate the parameters for their 12-alternative case. Thus, an 
alternative approach to incorporate non-linear constraints may be to work with the dual problem 
using indirect utility functions. Lee and Pitt (1987) provide a methodological treatment of 
incorporating block pricing with the dual approach. Further studies exploring this approach may 
enhance our ability to incorporate block prices. Another approach is to econometrically “treat” 
the inherent endogeneity between prices and consumption due to the dependency of prices on 
consumption, for example, by estimating price functions simultaneously with the consumer 
preferences (i.e., utility functions). This approach can potentially help in dealing with demand-
supply interactions in the market as well (see Berry et al., 1995). 
 
7.5 Prediction and Welfare Analysis with Flexible Model Structures 
Thanks to recent advances, we now have simple and computationally efficient methods to apply 
KKT models with additive utility forms for forecasting and welfare analysis purposes. As the 
field moves forward with the specification and estimation of more flexible MDC models, it is 
important to develop methods to apply these models as well. The prediction procedures proposed 
by von Haefen et al. (2004) and Pinjari and Bhat (2011) based on Karush-Kuhn-Tucker 
conditions of optimality can potentially be extended to the case with multiple linear binding 
constraints as well, although with additional layers of computational effort (as many as the 
number of constraints). However, these procedures fall apart in situations with non-additive 
utility functions, as they are critically hinged upon the additive utility assumption. Similarly, the 
presence of non-linear constraints can make it difficult to apply KKT conditions alone for 
solving the utility maximization problem. Resolving each of these issues is a welcome research 
direction. 
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Another useful direction of research is in the context of additive utility functions with a 
simple linear constraint. While we are now able to exploit the KKT conditions for obtaining the 
conditional predictions (given specific values of the random terms), we have not been able to 
characterize the unconditional distributions of the demand functions. In the presence of corner 
solutions, it is difficult to arrive at closed form expressions for the demand functions from 
Equation (1). Perhaps this is why we are not aware of successful attempts to arrive at analytical 
expressions for price elasticities and sensitivities to explanatory variables. Besides, application of 
these models requires the simulation of the stochastic terms. In some cases, such as the case with 
MEV stochastic distributions, the stochastic terms themselves are difficult to simulate. Thus 
development of fast methods to simulate MEV distributions can aid in the application of KKT 
models with such stochastic specifications. 
 
8. SUMMARY 
There has been an increasing recognition of the “multiple discrete-continuous (MDC)” nature of 
consumer choices. Over the past decade, the field has witnessed exciting developments in 
modeling MDC choices, especially with the advancement of the Karush-Kuhn-Tucker (KKT) 
approach to modeling consumer behavior based on random utility maximization (RUM). Notable 
developments include:  

(a) Clever specifications with distributional assumptions that lead to closed-form probability 
expressions enabling easy estimation of the structural parameters (e.g., the MDCEV model),  

(b) Application of the KKT approach to model MDC choices in a variety of empirical contexts,  

(c) Formulation of computationally efficient prediction/welfare analysis methods with KKT 
models,  

(d) Extension of the basic RUM specification in Equation (1) to accommodate richer patterns of 
heterogeneity in consumer preferences and to allow flexibility in distributional assumptions. 
Most of these extensions have been “econometrically” oriented, akin to the extensions of the 
multinomial logit model in the traditional discrete choice analysis literature. 

In the recent past, there has been an increasing recognition of the need to extend the basic 
formulation of consumer’s utility maximization in Equation (1) in the following directions: 

(a) Flexible functional forms for the utility specification, such as non-additive utility forms 

(b) Flexible stochastic specifications for the utility functions, such as MVN distributions 

(c) Flexibility in the specification of constraints faced by the consumer, including multiple inter-
related constraints, and non-linear constraints. 

Given the pace of recent developments, we optimistically look forward to seeing model 
formulations, estimation methods, and prediction/welfare analysis procedures for a general 
framework with non-additive utility forms, flexible stochastic distributional assumptions, and 
general forms of constraints. 
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